

Département des Sciences, des Technologies et du Vivant

Master en sciences de l'ingénieur industriel électromécanique Finalité automatique

HELHa Campus Mons 159 Chaussée de Binche 7000 MONS

Tél: +32 (0) 65 40 41 46 Fax: +32 (0) 65 40 41 56 Mail: tech.mons@helha.be

1. Identification de l'Unité d'Enseignement

	UE ME431 COP Automatique I				
Ancien Code	TEMA1M31	Caractère	Obligatoire		
Nouveau Code	XIAM1310				
Bloc	1M	Quadrimestre(s) Q1			
Crédits ECTS	10 C	120 h			
Coordonnées des responsables et des intervenants dans l'UE	Sophie BOURDON (sophie.bourdon@helha.be) William HUBERLAND (william.huberland@helha.be)				
Coefficient de pondération		100			
Cycle et niveau du Cadre Francophone de Certification		master / niveau 7 du CFC			
Langue d'enseignement et d	'évaluation	Français			

2. Présentation

Introduction

Cette unité d'enseignement fait partie de la formation d'ingénieur industriel en électromécanique, filière automatique.

Elle a pour but d'aborder les concepts suivants :

- Bases de données
- Programmation orientée objet I
- Programation orientée objet II
- Programmation structurée PLC I
- Robotique

Contribution au profil d'enseignement (cf. référentiel de compétences)

Cette Unité d'Enseignement contribue au développement des compétences et capacités suivantes :

- Compétence 1 Identifier, conceptualiser et résoudre des problèmes complexes
 - 1.3 Concevoir, développer et améliorer des produits, processus et systèmes techniques
 - 1.4 Modéliser, calculer et dimensionner des systèmes
 - 1.5 Sélectionner et exploiter les logiciels et outils conceptuels les plus appropriés pour résoudre une tâche spécifique
- Compétence 2 Concevoir et gérer des projets de recherche appliquée
 - 2.1 Réunir les informations nécessaires au développement de projets de recherche
- Compétence 3 Maîtriser et intégrer l'ensemble des technologies nécessaires à la conception de systèmes électromécaniques
 - 3.5 Respecter et faire respecter les législations et réglementations en vigueur, les normes, les procédures en termes d'assurance qualité, de certification, d'hygiène et de sécurité notamment dans le domaine concerné. (NBN....)
- Compétence 4 Gérer, améliorer, fiabiliser des process et des outils d'exploitation
 - 4.2 Utilisation de logiciels spécifiques de type CFAO, GMAO...

Acquis d'apprentissage visés

• Au terme de cette unité d'enseignement, pour la partie "Bases de données", l'étudiant sera capable:

- o de modéliser une base de données à partir d'un cahier des charges donné
- o de créer, à partir d'un modèle, une base de données en utilisant la syntaxe SQL
- o de rechercher des informations pertinentes dans une base de données en utilisant la syntaxe SQL
- Au terme de cette unité d'enseignement, pour la partie **"Programmation orientée objet I"**, l'étudiant sera capable de maîtriser différents objets conventionnels en vue de la réalisation d'une interface pour la gestion d'une application technique.
- Au terme de cette unité d'enseignement, pour la partie "**Programmation orientée objet II**", l'étudiant sera capable: d'utiliser le logiciel Visual Basic afin de réaliser une interface pour la gestion d'une application manipulant des données.
- Au terme de cette unité d'enseignement, pour la partie "Programmation structurée PLC I ", l'étudiant sera capable:
 - o d'énoncer et d'expliquer le fonctionnement général des API
 - o d'énoncer et d'expliquer les instructions de base des API
 - d'énoncer et d'expliquer les types de variables et de blocs
 - o d'énoncer et d'expliquer la méthode de programmation structurée multi-instance du GRAFCET
 - d'énoncer et d'expliquer le traitement des grandeurs analogiques et la mise en œuvre d'une boucle de régulation PID
- Au terme de cette unité d'enseignement, pour la partie "Robotique", l'étudiant sera capable :
- o d'identifier et de mettre en pratique les consignes de sécurité
- de piloter manuellement le robot
- de sauvegarder et recharger un programme
- o d'utiliser et de paramétrer les différents référentiels
- de programmer et de modifier des trajectoires simples
- o de démarrer un programme en mode automatique

Liens avec d'autres UE

Prérequis pour cette UE : aucun Corequis pour cette UE : aucun

3. Description des activités d'apprentissage

Cette unité d'enseignement comprend l(es) activité(s) d'apprentissage suivante(s) :

TEMA1M31A	Bases de données	12 h / 1 C
TEMA1M31B	Programmation orientée objet I	30 h / 2.5 C
TEMA1M31C	Programmation structurée PLC I	24 h / 2 C
TEMA1M31F	Programmation orientée objet II	30 h / 2.5 C
TEMA1M31G	Robotique	24 h / 2 C

Les descriptions détaillées des différentes activités d'apprentissage sont reprises dans les fiches descriptives jointes.

4. Modalités d'évaluation

Les 100 points attribués dans cette UE sont répartis entre les différentes activités de la manière suivante :

TEMA1M31A	Bases de données	10
TEMA1M31B	Programmation orientée objet I	25
TEMA1M31C	Programmation structurée PLC I	20
TEMA1M31F	Programmation orientée objet II	25
TEMA1M31G	Robotique	20

Les formes d'évaluation et les dispositions complémentaires particulières des différentes activités d'apprentissage sont reprises dans les fiches descriptives jointes.

Dispositions complémentaires relatives à l'UE

La cote finale de l'UE sera calculée sur base d'une moyenne géométrique pondérée.

Si le nombre de points cumulés en échecs dans les AA de l'UE est supérieur à 3, alors la note de l'UE sera la note de l'AA la plus basse.

La ou les visites d'entreprise éventuelle (s) organisée(s) durant l'année sont également obligatoires pour valider l'UE. En cas d'absence lors d'une visite industrielle, l'UE sera non validée et l'étudiant devra réaliser un travail écrit.

Les épreuves d'évaluation peuvent se faire en présentiel ou en distanciel.

Si l'étudiant fait une note de présence ou s'il ne se présente pas lors d'une évaluation, la note de PR ou PP sera alors

attribuée à l'UE.

D'autres modalités d'évaluation peuvent être prévues en fonction du parcours académique de l'étudiant. Celles-ci seront alors consignées dans un contrat didactique spécifique proposé par le responsable de l'UE, validé par la direction ou son délégué et signé par l'étudiant pour accord.

5. Cohérence pédagogique

Néant

Référence au RGE

Département des Sciences, des Technologies et du Vivant

Master en sciences de l'ingénieur industriel électromécanique Finalité automatique

HELHa Campus Mons 159 Chaussée de Binche 7000 MONS

Tél: +32 (0) 65 40 41 46 Fax: +32 (0) 65 40 41 56 Mail: tech.mons@helha.be

1. Identification de l'activité d'apprentissage

Bases de données				
Ancien Code	9_TEMA1M31A	Caractère	Obligatoire	
Nouveau Code	MIAM1311			
Bloc	1M	Quadrimestre(s)	Q1	
Crédits ECTS	1 C	Volume horaire	12 h	
Coordonnées du Titulaire de l'activité et des intervenants	William HUBERLAND (william.huberland@helha.be)			
Coefficient de pondération		10		
Langue d'enseignement et d'évaluation		Français		

2. Présentation

Introduction

Cette activité d'apprentissage fait partie de la formation d'ingénieur industriel en électromécanique, filière automatique.

Elle a pour but d'aborder les concepts suivants : Bases de données

Objectifs / Acquis d'apprentissage

Au terme de cette unité d'enseignement, pour la partie "Bases de données", l'étudiant sera capable:

- de modéliser une base de données à partir d'un cahier des charges donné
- de créer, à partir d'un modèle, une base de données en utilisant la syntaxe SQL
- de rechercher des informations pertinentes dans une base de données en utilisant la syntaxe SQL

3. Description des activités d'apprentissage

Contenu

Pour la partie "Bases de données", les concepts et théories suivantes seront abordées :

- Introduction aux bases de données relationnelles
- Modélisation d'une base de données
- Le langage SQL
- Création d'une base de données avec MySQL

Démarches d'apprentissage

Pour la partie "Bases de données" : apprentissage par la pratique

Dispositifs d'aide à la réussite

Néant

Sources et références

Néant

Supports en ligne

Les supports en ligne et indispensables pour acquérir les compétences requises sont :

Mise à disposition des supports de cours sur la plateforme ConnectED

4. Modalités d'évaluation

Principe

Pour la partie "Bases de données", l'évaluation se fait sur base d'une évaluation continue (100%) via la réalisation d'un projet

Pondérations

Q1 C		Q2		Q3		
	Modalités	%	Modalités	%	Modalités	%
production journalière	Evc	100				
Période d'évaluation						

Evc = Évaluation continue

La pondération de cette activité d'apprentissage au sein de l'UE dont elle fait partie vaut 10

Dispositions complémentaires

Néant

Référence au RGE

Département des Sciences, des Technologies et du Vivant

Master en sciences de l'ingénieur industriel électromécanique Finalité automatique

HELHa Campus Mons 159 Chaussée de Binche 7000 MONS

Tél: +32 (0) 65 40 41 46 Fax: +32 (0) 65 40 41 56 Mail: tech.mons@helha.be

1. Identification de l'activité d'apprentissage

Programmation orientée objet I				
Ancien Code	9_TEMA1M31B	Caractère	Obligatoire	
Nouveau Code	MIAM1312			
Bloc	1M	Quadrimestre(s)	Q1	
Crédits ECTS	2.5 C	Volume horaire	30 h	
Coordonnées du Titulaire de l'activité et des intervenants	Sophie BOURDON (sophie.bourdon@helha.be)			
Coefficient de pondération 25				
Langue d'enseignement et d'évaluation		Français		

2. Présentation

Introduction

Cette activité d'apprentissage fait partie de la formation d'ingénieur industriel en électromécanique, filière automatique.

Elle a pour but d'aborder les concepts suivants : Programmation orientée objet I

Objectifs / Acquis d'apprentissage

Au terme de cette unité d'enseignement, pour la partie "Programmation orientée objet I", l'étudiant sera capable de maîtriser différents objets conventionnels en vue de la réalisation d'une interface pour la gestion d'une application technique.

3. Description des activités d'apprentissage

Contenu

Pour la partie "Programmation orientée objet I", les concepts et théories suivantes seront abordées :

- Interface de développement
- Types de variables
- Opérateurs et fonctions de base
- Description des objets conventionnels
- Applications multifenêtres
- Accès aux fichiers texte

Démarches d'apprentissage

Pour la partie "Programmation orientée objet l" : exposés théoriques en alternance avec de nombreux exercices dirigés sur ordinateur

Dispositifs d'aide à la réussite

Sources et références

Néant

Supports en ligne

Les supports en ligne et indispensables pour acquérir les compétences requises sont :

Mise à disposition des supports de cours sur la plateforme ConnectED

4. Modalités d'évaluation

Principe

Pour les parties "Programmation orientée objet I et II", l'évaluation se fait sur base d'une évaluation continue. L'étudiant conçoit des applications diverses sur ordinateur et réalise un projet concret

Pondérations

Q1		Q2		Q3		
	Modalités	%	Modalités	%	Modalités	%
production journalière	Evc	100				
Période d'évaluation					Prj	100

Evc = Évaluation continue, Prj = Projet(s)

La pondération de cette activité d'apprentissage au sein de l'UE dont elle fait partie vaut 25

Dispositions complémentaires

Néant

Référence au RGE

Département des Sciences, des Technologies et du Vivant

Master en sciences de l'ingénieur industriel électromécanique Finalité automatique

HELHa Campus Mons 159 Chaussée de Binche 7000 MONS

Tél: +32 (0) 65 40 41 46 Fax: +32 (0) 65 40 41 56 Mail: tech.mons@helha.be

1. Identification de l'activité d'apprentissage

Programmation structurée PLC I				
Ancien Code	9_TEMA1M31C	Caractère	Obligatoire	
Nouveau Code	MIAM1313			
Bloc	1M Quadrimestre(s) Q1			
Crédits ECTS	2 C	Volume horaire	24 h	
Coordonnées du Titulaire de l'activité et des intervenants	William HUBERLAND (william.huberland@helha.be)			
Coefficient de pondération	20			
Langue d'enseignement et d	'évaluation	Français		

2. Présentation

Introduction

Cette activité d'apprentissage fait partie de la formation d'ingénieur industriel en électromécanique, filière automatique.

Elle a pour but d'aborder les concepts suivants :

• programmation des automates programmables industriels.

Objectifs / Acquis d'apprentissage

Au terme de cette activité d'apprentissage, l'étudiant sera capable:

- d'énoncer et d'expliquer le fonctionnement général des API
- d'énoncer et d'expliquer les instructions de base des API
- d'énoncer et d'expliquer les types de variables et de blocs
- d'énoncer et d'expliquer la méthode de programmation structurée du GRAFCET
- d'énoncer et d'expliquer le traitement des grandeurs analogiques et la mise en œuvre d'une boucle de régulation PID

3. Description des activités d'apprentissage

Contenu

Pour la partie "Programmation structurée PLC I", les concepts et théories suivantes seront abordées :

- Introduction aux API
- Fonctionnement des API
- Les opérations de base en LD
- Mise en œuvre du GRAFCET en programmation structurée
- Les types de variables et les types de blocs
- Programmation structurée multi-instance
- Traitement des grandeurs analogiques
- Mise en œuvre d'une boucle de régulation PID

Démarches d'apprentissage

Laboratoires et exercices dirigés

Dispositifs d'aide à la réussite

Néant

Sources et références

Documentation et manuels de formation Siemens.

Supports en ligne

Les supports en ligne et indispensables pour acquérir les compétences requises sont :

Mise à disposition des supports de cours sur la plateforme ConnectED.

4. Modalités d'évaluation

Principe

Evaluation hors session par projet de groupe.

Pondérations

	Q1		Q2		Q3	
	Modalités	%	Modalités	%	Modalités	%
production journalière						
Période d'évaluation						

La pondération de cette activité d'apprentissage au sein de l'UE dont elle fait partie vaut 20

Dispositions complémentaires

Néant

Référence au RGE

Département des Sciences, des Technologies et du Vivant

Master en sciences de l'ingénieur industriel électromécanique Finalité automatique

HELHa Campus Mons 159 Chaussée de Binche 7000 MONS

Tél: +32 (0) 65 40 41 46 Fax: +32 (0) 65 40 41 56 Mail: tech.mons@helha.be

1. Identification de l'activité d'apprentissage

Programmation orientée objet II				
Ancien Code	9_TEMA1M31F	Caractère	Obligatoire	
Nouveau Code	MIAM1316			
Bloc	1M	Quadrimestre(s)	Q1	
Crédits ECTS	2.5 C	Volume horaire	30 h	
Coordonnées du Titulaire de l'activité et des intervenants	Sophie BOURDON (sophie.bourdon@helha.be)			
Coefficient de pondération 25				
Langue d'enseignement et d'évaluation		Français		

2. Présentation

Introduction

Cette activité d'apprentissage fait partie de la formation d'ingénieur industriel en électromécanique, filière automatique.

Elle a pour but d'aborder les concepts suivants : Programation orientée objet II

Objectifs / Acquis d'apprentissage

Au terme de cette unité d'enseignement, pour la partie "Programmation orientée objet II", l'étudiant sera capable: d'utiliser le logiciel Visual Basic afin de réaliser une interface pour la gestion d'une application manipulant des données.

3. Description des activités d'apprentissage

Contenu

Pour la partie "Programmation orientée objet II", les concepts et théories suivantes seront abordées: liens VB-BD, VBlecture d'une BD, VB-écriture d'une BD, VB-mise à jour d'une BD, VB-objets MySQL

Démarches d'apprentissage

Pour la partie "Programmation orientée objet II" : exercices dirigés et projet

Dispositifs d'aide à la réussite

Pour la partie "Programmation orientée objet II" : exposés théoriques en alternance avec des séances pratiques destinées à la réalisation d'un projet

Sources et références

Néant

Supports en ligne

Les supports en ligne et indispensables pour acquérir les compétences requises sont :

Mise à disposition des supports de cours sur la plateforme ConnectED

4. Modalités d'évaluation

Principe

Pour la partie "Programmation orientée objet II", l'évaluation se fait sur base d'un projet concret

Pondérations

	Q1		Q2		Q3	
	Modalités	%	Modalités	%	Modalités	%
production journalière						
Période d'évaluation	Prj	100			Prj	100

Prj = Projet(s)

La pondération de cette activité d'apprentissage au sein de l'UE dont elle fait partie vaut 25

Dispositions complémentaires

Néant

Référence au RGE

Département des Sciences, des Technologies et du Vivant

Master en sciences de l'ingénieur industriel électromécanique Finalité automatique

HELHa Campus Mons 159 Chaussée de Binche 7000 MONS

Tél: +32 (0) 65 40 41 46 Fax: +32 (0) 65 40 41 56 Mail: tech.mons@helha.be

1. Identification de l'activité d'apprentissage

Robotique				
Ancien Code	9_TEMA1M31G	Caractère	Obligatoire	
Nouveau Code	MIAM1310			
Bloc	1M	Quadrimestre(s)	Q1	
Crédits ECTS	2 C	Volume horaire	24 h	
Coordonnées du Titulaire de l'activité et des intervenants	William HUBERLAND (william.huberland@helha.be)			
Coefficient de pondération	20			
Langue d'enseignement et d'évaluation		Français		

2. Présentation

Introduction

Cette activité d'apprentissage fait partie de la formation d'ingénieur industriel en électromécanique, filière automatique.

Elle a pour but d'aborder les concepts de robotique.

Objectifs / Acquis d'apprentissage

Au terme de cette unité d'enseignement, pour la partie "Robotique", l'étudiant sera capable :

- d'identifier et de mettre en pratique les consignes de sécurité
- de piloter manuellement le robot
- de sauvegarder et recharger un programme
- d'utiliser et de paramétrer les différents référentiels
- de programmer et de modifier des trajectoires simples
- de démarrer un programme en mode automatique

3. Description des activités d'apprentissage

Contenu

Pour la partie "Robotique", les concepts et théories suivantes seront abordées :

- Structure du programme
- Conception d'un nouveau programme
- Instruction de mouvement de base
- Excécution du programme
- Sauvegarde et restauration système

Démarches d'apprentissage

Apprentissage par la pratique.

Dispositifs d'aide à la réussite

Néant

Sources et références

Documents techniques et manuels de formation disponnibles sur le site du fabriquant (www.niryo.com).

Supports en ligne

Les supports en ligne et indispensables pour acquérir les compétences requises sont :

Présentation PowerPoint.

4. Modalités d'évaluation

Principe

Evaluation hors session via un projet.

Pondérations

	Q1		Q2		Q3	
	Modalités	%	Modalités	%	Modalités	%
production journalière						
Période d'évaluation						

La pondération de cette activité d'apprentissage au sein de l'UE dont elle fait partie vaut 20

Dispositions complémentaires

Néant

Référence au RGE